Dify
日本語
日本語
  • 入門
    • Difyへようこそ
      • 特性と技術仕様
      • モデルプロバイダーリスト
    • クラウドサービス
    • コミュニティ版
      • Docker Compose デプロイ
      • ローカルソースコードで起動
      • aaPanelでのデプロイ方法
      • フロントエンドDockerコンテナを単独起動
      • 環境変数の説明
      • よくある質問
    • Dify Premium
    • Dify 教育版
  • マニュアル
    • モデル
      • 新しいプロバイダーの追加
      • 事前定義されたモデルの追加
      • カスタムモデルの追加
      • インタフェース
      • 配置ルール
      • 負荷分散
    • アプリ・オーケストレーション
      • アプリの作成
      • チャットボット
        • 複数モデルのデバッグ
      • エージェント
      • ツールキット
        • コンテンツモデレーション
    • ワークフロー
      • キーコンセプト
      • 変数
      • ノードの説明
        • 開始
        • 終了
        • 回答
        • LLM
        • 知識検索
        • 質問分類
        • 条件分岐
        • コード実行
        • テンプレート
        • テキスト抽出ツール
        • リスト処理
        • 変数集約
        • 変数代入
        • 反復処理(イテレーション)
        • パラメータ抽出
        • HTTPリクエスト
        • エージェント
        • ツール
        • 繰り返し処理(ループ)
      • ショートカットキー
      • オーケストレートノード
      • ファイルアップロード
      • エラー処理
        • 事前定義されたエラー処理ロジック
        • エラータイプの概要
      • 追加機能
      • プレビューとデバッグ
        • プレビューと実行
        • ステップ実行
        • 対話/実行ログ
        • チェックリスト
        • 実行履歴
      • アプリケーション公開
      • JSON形式での出力
      • 変更通知:画像アップロード機能がファイルアップロード機能に統合されました
    • ナレッジベース
      • ナレッジベース作成
        • 1. オンラインデータソースの活用
          • 1.1 Notion からデータをインポート
          • 1.2 Webサイトからデータをインポート
        • 2. チャンクモードの指定
        • 3. インデックス方式と検索オプションの設定
      • ナレッジベースの管理
        • ナレッジベース内ドキュメントの管理
        • APIを活用したナレッジベースのメンテナンス
      • メタデータ
      • アプリ内でのナレッジベース統合
      • リコールテスト/引用帰属
      • ナレッジベースの要求頻度制限
      • 外部ナレッジベースとの接続
      • 外部ナレッジベースAPI
    • ツール
      • クイック統合ツール
      • 高度統合ツール
      • ツールの設定
        • Google
        • Bing
        • SearchApi
        • StableDiffusion
        • Perplexity Search
        • AlphaVantage 株式分析
        • Dall-e
        • Youtube
        • Serper
        • SearXNG
        • SiliconFlow(Flux AI サポート)
        • ComfyUI
    • アプリ公開
      • シングルページWebアプリとして公開
        • Web アプリの設定
        • テキスト生成アプリ
        • 対話型アプリ
      • Webサイトへの埋め込み
      • API基づく開発
      • フロントエンドテンプレートに基づいた再開発
    • アノテーション
      • ログとアノテーション
      • アノテーション返信
    • モニタリング
      • データ分析
      • 外部Opsツール統合
        • LangSmithを統合
        • LangFuseを統合
        • Opikを統合
    • 拡張
      • API 拡張
        • Cloudflare Workers を使用した API ツールのデプロイ
        • コンテンツモデレーション
      • コード拡張
        • 外部データツール
        • コンテンツモデレーション
    • コラボレーション
      • 発見
      • メンバーの招待と管理
    • 管理
      • アプリの管理
      • チームメンバーの管理
      • 個人アカウントの管理
      • サブスクリプション管理
      • バージョン管理
  • ハンドオン工房
    • 初級編
      • ゼロからAI画像生成アプリの構築方法
      • AIエージェントの実践:個人のオンライン旅行アシスタントの構築方法
    • 中級編
      • チャットストリームエージェントを使用した Twitter アカウントの分析方法
      • ファイルアップロードを使用した記事理解アシスタントの構築方法
  • コミュニティ
    • サポートの求め
    • 貢献者ガイド
    • ドキュメントへの貢献
  • プラグイン
    • 機能紹介
    • クイックスタート
      • プラグインのインストールと活用
      • プラグイン開発の入門
        • 開発環境のセットアップ
        • ツール型プラグイン
        • モデル型プラグイン
          • モデルプロバイダーの構築
          • 定義済みモデルの組み込み
          • カスタムモデルの組み込み
        • エージェント戦略プラグイン
        • 拡張機能型プラグイン
        • バンドル
      • プラグインのデバッグ方法
    • プラグイン管理方法
    • スキーマ仕様
      • Manifest(マニフェスト)
      • Endpoint(エンドポイント)
      • Tool(ツール)
      • Agent(エージェント)
      • Model(モデル)
        • モデル設計規則
        • モデルスキーマ
      • 一般的な標準仕様
      • 永続化されたストレージ
      • Difyサービスの逆呼び出し
        • アプリ
        • モデル
        • ツール
        • ノード
    • ベストプラクティス
      • Slack Bot プラグインの開発
      • Dify MCP プラグインガイド:ワンクリックで Zapier に接続してメールを自動送信
    • プラグインの公開
      • プラグインの自動公開
      • Difyマーケットプレイスへの公開
        • プラグイン開発者ガイドライン
        • プラグインのプライバシー保護に関するガイドライン
      • 個人GitHubリポジトリへの公開
      • ローカルでの公開と共有
      • 第三者署名検証のためにプラグインに署名する
    • よくある質問
  • 開発
    • バックエンド
      • DifySandbox
        • 貢献ガイド
    • モデルの統合
      • Hugging Faceのオープンソースモデルを統合
      • Replicateのオープンソースモデルを統合
      • Xinferenceでデプロイしたローカルモデルを統合
      • OpenLLMでデプロイしたローカルモデルを統合
      • LocalAIでデプロイしたローカルモデルを統合
      • Ollamaでデプロイしたローカルモデルを統合
      • LiteLLM Proxyを使用してモデルを統合する
      • GPUStackとの統合によるローカルモデルのデプロイ
      • AWS Bedrock上のモデル(DeepSeek)の接続
    • 移行
      • コミュニティ版を v1.0.0 に移行する
  • もっと読む
    • 活用事例
      • DeepSeek & Dify連携ガイド:多段階推論を活用したAIアプリケーション構築
      • Ollama + DeepSeek + Dify のプライベートデプロイ:あなた自身のAIアシスタントの構築方法
      • あなた専用のQAチャットボットのトレーニング方法
      • コードなしでMidjourney プロンプトボットを作成する方法
      • Notion AI アシスタントを構築する
      • 数分で業務データを持つ公式サイトのAIチャットボットを作成する方法
      • DifyチャットボットをWixサイトに統合する方法
      • AWS Bedrockのナレッジベースに統合する方法
      • Difyで大規模言語モデルの「競技場」を体験する方法:DeepSeek R1 VS o1 を例に
      • Difyスケジューラーの構築
      • DifyクラウドでAI Thesis Slack Botを構築
    • さらに読む
      • LLMOpsとは何ですか?
      • 配列変数とは何ですか?
      • 検索拡張生成(RAG)
        • ハイブリッド検索
        • Rerank
        • リトリーバルモード
      • プロンプトエンジニアリング
      • DifyでJSONスキーマ出力を使用する方法
    • FAQ
      • ローカルデプロイに関するFAQ
      • LLM設定と使用に関するFAQ
      • プラグイン
  • ポリシー
    • オープンソースライセンス
    • ユーザ規約
      • 利用規約
      • プライバシーポリシー
      • 合規性レポートの入手方法
Powered by GitBook
On this page
  • 定義
  • 設定手順
  • ノードの追加
  • エージェント戦略の選択
  • ノードパラメータ設定
  • ログ確認
  • メモリ機能
  1. マニュアル
  2. ワークフロー
  3. ノードの説明

エージェント

PreviousHTTPリクエストNextツール

Last updated 2 months ago

定義

エージェントノードは、Difyチャットフローやワークフローにおいて自律的なツール呼び出しを実現するコンポーネントです。異なるエージェント推論戦略を統合することで、大規模言語モデル(LLM)が実行時に動的にツールを選択・実行し、多段階推論を可能にします。

設定手順

ノードの追加

チャットフローやワークフローのエディタで、コンポーネントパネルからエージェントノードをキャンバスにドラッグします。

エージェント戦略の選択

ノード設定パネルで エージェント戦略 をクリックします。

ドロップダウンメニューから推論戦略を選択します。Difyは Function Calling と ReAct を標準装備しており、Marketplace → エージェント戦略 カテゴリから追加インストール可能です。

1. Function Calling

ユーザー指示を事前定義された関数/ツールにマッピングし、LLMが意図を識別→適切な関数を選択→パラメータ抽出という明確なツール呼び出しメカニズムです。

特徴:

• 高精度: 明確なタスクに直結するツールを直接呼び出し

• 外部連携容易: API/ツールを関数化して統合可能

• 構造化出力: 下流ノード処理向けの定型化された情報出力

2. ReAct(Reason + Act)

思考(Reason)と行動(Act)を交互に繰り返す戦略です。LLMが現状分析→ツール選択→実行→結果評価のサイクルを問題解決まで継続します。

特徴:

  • 外部リソース活用: モデル単体では困難なタスクを実行可能

  • 処理追跡性: 思考プロセスが可視化され説明性が向上

  • 広範な適用: Q&A/情報検索/タスク実行など多様なシナリオに対応

ノードパラメータ設定

選択した戦略に応じた設定項目が表示されます。標準装備のFunction Calling/ReActでは以下を設定:

  1. モデル: エージェントを駆動するLLMを選択

  2. ツールリスト: 「+」で呼び出し可能ツールを追加

    • 検索: インストール済みツールから選択

    • 認証: APIキーなどの認証情報を入力

    • 説明とパラメータ: ツールの用途説明とパラメータ設定

  3. 指示文: タスク目標とコンテキストを定義(Jinja構文で上位ノード変数参照可)

  4. クエリ: ユーザー入力を受け取る変数

  5. 最大実行ステップ数: 処理サイクルの上限値

  6. 出力変数: ノードが出力するデータ構造

ログ確認

実行時には詳細なログが生成されます。基本情報(入出力/トークン使用量/処理時間/状態)に加え、「詳細」から各処理ステップの出力を確認可能です。

メモリ機能

メモリスイッチを有効にすると、エージェントに会話コンテキストを記憶する能力が付与されます。メモリウィンドウサイズスライダーを調整することで、エージェントが「記憶」できる過去の会話メッセージ数を制御できます。これにより、エージェントは以前のやり取りを理解して参照し、一貫性のある文脈に沿った応答を提供することができ、複数ターンの対話体験を大幅に向上させます。

例えば、ユーザーが後続のメッセージで代名詞(「それ」、「これ」、「彼ら」など)を使用する場合、メモリ機能が有効になっているエージェントは、ユーザーが完全な情報を繰り返し述べなくても、これらの代名詞が前のコンテキストから何を指しているかを理解できます。

開発者は公開へ戦略プラグインを提供可能で、審査後Marketplaceで公開されます。

リポジトリ