Dify
日本語
日本語
  • 入門
    • Difyへようこそ
      • 特性と技術仕様
      • モデルプロバイダーリスト
    • クラウドサービス
    • コミュニティ版
      • Docker Compose デプロイ
      • ローカルソースコードで起動
      • aaPanelでのデプロイ方法
      • フロントエンドDockerコンテナを単独起動
      • 環境変数の説明
      • よくある質問
    • Dify Premium
    • Dify 教育版
  • マニュアル
    • モデル
      • 新しいプロバイダーの追加
      • 事前定義されたモデルの追加
      • カスタムモデルの追加
      • インタフェース
      • 配置ルール
      • 負荷分散
    • アプリ・オーケストレーション
      • アプリの作成
      • チャットボット
        • 複数モデルのデバッグ
      • エージェント
      • ツールキット
        • コンテンツモデレーション
    • ワークフロー
      • キーコンセプト
      • 変数
      • ノードの説明
        • 開始
        • 終了
        • 回答
        • LLM
        • 知識検索
        • 質問分類
        • 条件分岐
        • コード実行
        • テンプレート
        • テキスト抽出ツール
        • リスト処理
        • 変数集約
        • 変数代入
        • 反復処理(イテレーション)
        • パラメータ抽出
        • HTTPリクエスト
        • エージェント
        • ツール
        • 繰り返し処理(ループ)
      • ショートカットキー
      • オーケストレートノード
      • ファイルアップロード
      • エラー処理
        • 事前定義されたエラー処理ロジック
        • エラータイプの概要
      • 追加機能
      • プレビューとデバッグ
        • プレビューと実行
        • ステップ実行
        • 対話/実行ログ
        • チェックリスト
        • 実行履歴
      • アプリケーション公開
      • JSON形式での出力
      • 変更通知:画像アップロード機能がファイルアップロード機能に統合されました
    • ナレッジベース
      • ナレッジベース作成
        • 1. オンラインデータソースの活用
          • 1.1 Notion からデータをインポート
          • 1.2 Webサイトからデータをインポート
        • 2. チャンクモードの指定
        • 3. インデックス方式と検索オプションの設定
      • ナレッジベースの管理
        • ナレッジベース内ドキュメントの管理
        • APIを活用したナレッジベースのメンテナンス
      • メタデータ
      • アプリ内でのナレッジベース統合
      • リコールテスト/引用帰属
      • ナレッジベースの要求頻度制限
      • 外部ナレッジベースとの接続
      • 外部ナレッジベースAPI
    • ツール
      • クイック統合ツール
      • 高度統合ツール
      • ツールの設定
        • Google
        • Bing
        • SearchApi
        • StableDiffusion
        • Perplexity Search
        • AlphaVantage 株式分析
        • Dall-e
        • Youtube
        • Serper
        • SearXNG
        • SiliconFlow(Flux AI サポート)
        • ComfyUI
    • アプリ公開
      • シングルページWebアプリとして公開
        • Web アプリの設定
        • テキスト生成アプリ
        • 対話型アプリ
      • Webサイトへの埋め込み
      • API基づく開発
      • フロントエンドテンプレートに基づいた再開発
    • アノテーション
      • ログとアノテーション
      • アノテーション返信
    • モニタリング
      • データ分析
      • 外部Opsツール統合
        • LangSmithを統合
        • LangFuseを統合
        • Opikを統合
    • 拡張
      • API 拡張
        • Cloudflare Workers を使用した API ツールのデプロイ
        • コンテンツモデレーション
      • コード拡張
        • 外部データツール
        • コンテンツモデレーション
    • コラボレーション
      • 発見
      • メンバーの招待と管理
    • 管理
      • アプリの管理
      • チームメンバーの管理
      • 個人アカウントの管理
      • サブスクリプション管理
      • バージョン管理
  • ハンドオン工房
    • 初級編
      • ゼロからAI画像生成アプリの構築方法
      • AIエージェントの実践:個人のオンライン旅行アシスタントの構築方法
    • 中級編
      • チャットストリームエージェントを使用した Twitter アカウントの分析方法
      • ファイルアップロードを使用した記事理解アシスタントの構築方法
  • コミュニティ
    • サポートの求め
    • 貢献者ガイド
    • ドキュメントへの貢献
  • プラグイン
    • 機能紹介
    • クイックスタート
      • プラグインのインストールと活用
      • プラグイン開発の入門
        • 開発環境のセットアップ
        • ツール型プラグイン
        • モデル型プラグイン
          • モデルプロバイダーの構築
          • 定義済みモデルの組み込み
          • カスタムモデルの組み込み
        • エージェント戦略プラグイン
        • 拡張機能型プラグイン
        • バンドル
      • プラグインのデバッグ方法
    • プラグイン管理方法
    • スキーマ仕様
      • Manifest(マニフェスト)
      • Endpoint(エンドポイント)
      • Tool(ツール)
      • Agent(エージェント)
      • Model(モデル)
        • モデル設計規則
        • モデルスキーマ
      • 一般的な標準仕様
      • 永続化されたストレージ
      • Difyサービスの逆呼び出し
        • アプリ
        • モデル
        • ツール
        • ノード
    • ベストプラクティス
      • Slack Bot プラグインの開発
      • Dify MCP プラグインガイド:ワンクリックで Zapier に接続してメールを自動送信
    • プラグインの公開
      • プラグインの自動公開
      • Difyマーケットプレイスへの公開
        • プラグイン開発者ガイドライン
        • プラグインのプライバシー保護に関するガイドライン
      • 個人GitHubリポジトリへの公開
      • ローカルでの公開と共有
      • 第三者署名検証のためにプラグインに署名する
    • よくある質問
  • 開発
    • バックエンド
      • DifySandbox
        • 貢献ガイド
    • モデルの統合
      • Hugging Faceのオープンソースモデルを統合
      • Replicateのオープンソースモデルを統合
      • Xinferenceでデプロイしたローカルモデルを統合
      • OpenLLMでデプロイしたローカルモデルを統合
      • LocalAIでデプロイしたローカルモデルを統合
      • Ollamaでデプロイしたローカルモデルを統合
      • LiteLLM Proxyを使用してモデルを統合する
      • GPUStackとの統合によるローカルモデルのデプロイ
      • AWS Bedrock上のモデル(DeepSeek)の接続
    • 移行
      • コミュニティ版を v1.0.0 に移行する
  • もっと読む
    • 活用事例
      • DeepSeek & Dify連携ガイド:多段階推論を活用したAIアプリケーション構築
      • Ollama + DeepSeek + Dify のプライベートデプロイ:あなた自身のAIアシスタントの構築方法
      • あなた専用のQAチャットボットのトレーニング方法
      • コードなしでMidjourney プロンプトボットを作成する方法
      • Notion AI アシスタントを構築する
      • 数分で業務データを持つ公式サイトのAIチャットボットを作成する方法
      • DifyチャットボットをWixサイトに統合する方法
      • AWS Bedrockのナレッジベースに統合する方法
      • Difyで大規模言語モデルの「競技場」を体験する方法:DeepSeek R1 VS o1 を例に
      • Difyスケジューラーの構築
      • DifyクラウドでAI Thesis Slack Botを構築
    • さらに読む
      • LLMOpsとは何ですか?
      • 配列変数とは何ですか?
      • 検索拡張生成(RAG)
        • ハイブリッド検索
        • Rerank
        • リトリーバルモード
      • プロンプトエンジニアリング
      • DifyでJSONスキーマ出力を使用する方法
    • FAQ
      • ローカルデプロイに関するFAQ
      • LLM設定と使用に関するFAQ
      • プラグイン
  • ポリシー
    • オープンソースライセンス
    • ユーザ規約
      • 利用規約
      • プライバシーポリシー
      • 合規性レポートの入手方法
Powered by GitBook
On this page
  1. もっと読む
  2. さらに読む

LLMOpsとは何ですか?

LLMOps(大型言語モデル運用)は、GPTシリーズなどの大型言語モデルの開発、デプロイ、メンテナンス、および最適化を含む一連の実践とプロセスです。LLMOpsの目標は、これらの強力なAIモデルを効果的、拡張可能、安全に使用して実際のアプリケーションを構築および運用することにあります。これには、モデルのトレーニング、デプロイ、モニタリング、更新、セキュリティ、およびコンプライアンスが含まれます。

下表は、Difyを使用する前と後でAIアプリケーション開発の各段階の違いを示しています:

ステップ
LLMOpsプラットフォーム未使用
Dify LLMOpsプラットフォーム使用
所要時間の差異

アプリケーションの前後エンド開発

LLM機能の統合とパッケージ化に多くの時間を費やし、フロントエンドアプリの開発

Difyのバックエンドサービスを直接使用し、Webアプリのスキャフォルディングに基づいて開発

-80%

プロンプトエンジニアリング

APIまたはプレイグラウンドを通じてのみ実行可能

ユーザー入力データと組み合わせて、所見即所得でデバッグ完了

-25%

データ準備と埋め込み

長文データ処理と埋め込みのコードを書く

プラットフォームにテキストをアップロードするか、データソースをバインドするだけで完了

-80%

アプリケーションログと分析

ログを記録するコードを書き、データベースにアクセスして確認

プラットフォームがリアルタイムのログと分析を提供

-70%

データ分析と微調整

技術者がデータ管理と微調整のキューを作成

非技術者も協力可能で、視覚的なモデル調整

-60%

AIプラグインの開発と統合

コードを書いてAIプラグインを作成、統合

プラットフォームが視覚的なツールを提供し、プラグインの作成と統合を支援

-50%

DifyのようなLLMOpsプラットフォームを使用する前は、LLMに基づいたアプリケーションの開発プロセスは非常に煩雑で時間がかかる可能性がありました。開発者は各段階のタスクを自分で処理する必要があり、これが効率の低下、拡張の困難さ、安全性の問題を引き起こす可能性がありました。以下はLLMOpsプラットフォームを使用する前の開発プロセスです:

  1. データ準備:手動でデータを収集し、前処理を行う。複雑なデータクリーニングやラベル付け作業が含まれ、多くのコードを書く必要がある。

  2. プロンプトエンジニアリング:APIやプレイグラウンドを通じてのみプロンプトの作成とデバッグを行い、リアルタイムのフィードバックや視覚的なデバッグが不足。

  3. 埋め込みとコンテキスト管理:長いコンテキストの埋め込みと保存を手動で処理し、最適化と拡張が難しく、多くのプログラミング作業が必要。モデルの埋め込みやベクターデータベースなどの技術に精通している必要がある。

  4. アプリケーションのモニタリングとメンテナンス:手動でパフォーマンスデータを収集し分析するため、問題をリアルタイムで発見し処理することが困難で、ログ記録がない場合もある。

  5. モデルの微調整:微調整データの準備とトレーニングプロセスを自分で処理し、効率が低下し、多くのコードを書く必要がある。

  6. システムと運用:技術者の参加が必要で、管理バックエンドの開発にコストがかかり、開発とメンテナンスのコストが増加し、非技術者に対して友好的ではない。

DifyのようなLLMOpsプラットフォームを導入すると、LLMに基づいたアプリケーションの開発プロセスはより効率的、拡張可能、安全になります。以下はDifyのようなLLMOpsを使用した場合のLLMアプリケーション開発の利点です:

  1. データ準備:プラットフォームがデータ収集と前処理ツールを提供し、データクリーニングやラベル付け作業を簡素化し、コーディング作業を最小化または排除。

  2. プロンプトエンジニアリング:所見即所得のプロンプト編集とデバッグが可能で、ユーザー入力データに基づいてリアルタイムの最適化と調整が行える。

  3. 埋め込みとコンテキスト管理:長いコンテキストの埋め込み、保存、管理を自動化し、効率と拡張性を向上させるため、多くのコードを書く必要がない。

  4. アプリケーションのモニタリングとメンテナンス:リアルタイムでパフォーマンスデータをモニタリングし、問題を迅速に発見し処理し、アプリケーションの安定運用を保証し、完全なログ記録を提供。

  5. 微調整データ準備:人工ラベルデータセットのバッチエクスポートを提供し、アプリケーション運用中にオンラインフィードバックデータを収集してモデルの効果を継続的に改善。

  6. システムと運用:使いやすいインターフェースで非技術者も参加可能、多人数協力をサポートし、開発とメンテナンスコストを削減。従来の開発方法と比較して、Difyはより透明で監視しやすいアプリケーション管理を提供し、チームメンバーがアプリケーションの運用状況をより良く理解できるようにします。

さらに、DifyはAIプラグインの開発と統合機能を提供し、開発者がさまざまなアプリケーションに基づいてLLMプラグインを簡単に作成およびデプロイすることを可能にし、開発効率とアプリケーションの価値をさらに向上させます。

Previousさらに読むNext配列変数とは何ですか?

Last updated 12 months ago