Dify
日本語
日本語
  • 入門
    • Difyへようこそ
      • 特性と技術仕様
      • モデルプロバイダーリスト
    • クラウドサービス
    • コミュニティ版
      • Docker Compose デプロイ
      • ローカルソースコードで起動
      • aaPanelでのデプロイ方法
      • フロントエンドDockerコンテナを単独起動
      • 環境変数の説明
      • よくある質問
    • Dify Premium
    • Dify 教育版
  • マニュアル
    • モデル
      • 新しいプロバイダーの追加
      • 事前定義されたモデルの追加
      • カスタムモデルの追加
      • インタフェース
      • 配置ルール
      • 負荷分散
    • アプリ・オーケストレーション
      • アプリの作成
      • チャットボット
        • 複数モデルのデバッグ
      • エージェント
      • ツールキット
        • コンテンツモデレーション
    • ワークフロー
      • キーコンセプト
      • 変数
      • ノードの説明
        • 開始
        • 終了
        • 回答
        • LLM
        • 知識検索
        • 質問分類
        • 条件分岐
        • コード実行
        • テンプレート
        • テキスト抽出ツール
        • リスト処理
        • 変数集約
        • 変数代入
        • 反復処理(イテレーション)
        • パラメータ抽出
        • HTTPリクエスト
        • エージェント
        • ツール
        • 繰り返し処理(ループ)
      • ショートカットキー
      • オーケストレートノード
      • ファイルアップロード
      • エラー処理
        • 事前定義されたエラー処理ロジック
        • エラータイプの概要
      • 追加機能
      • プレビューとデバッグ
        • プレビューと実行
        • ステップ実行
        • 対話/実行ログ
        • チェックリスト
        • 実行履歴
      • アプリケーション公開
      • JSON形式での出力
      • 変更通知:画像アップロード機能がファイルアップロード機能に統合されました
    • ナレッジベース
      • ナレッジベース作成
        • 1. オンラインデータソースの活用
          • 1.1 Notion からデータをインポート
          • 1.2 Webサイトからデータをインポート
        • 2. チャンクモードの指定
        • 3. インデックス方式と検索オプションの設定
      • ナレッジベースの管理
        • ナレッジベース内ドキュメントの管理
        • APIを活用したナレッジベースのメンテナンス
      • メタデータ
      • アプリ内でのナレッジベース統合
      • リコールテスト/引用帰属
      • ナレッジベースの要求頻度制限
      • 外部ナレッジベースとの接続
      • 外部ナレッジベースAPI
    • ツール
      • クイック統合ツール
      • 高度統合ツール
      • ツールの設定
        • Google
        • Bing
        • SearchApi
        • StableDiffusion
        • Perplexity Search
        • AlphaVantage 株式分析
        • Dall-e
        • Youtube
        • Serper
        • SearXNG
        • SiliconFlow(Flux AI サポート)
        • ComfyUI
    • アプリ公開
      • シングルページWebアプリとして公開
        • Web アプリの設定
        • テキスト生成アプリ
        • 対話型アプリ
      • Webサイトへの埋め込み
      • API基づく開発
      • フロントエンドテンプレートに基づいた再開発
    • アノテーション
      • ログとアノテーション
      • アノテーション返信
    • モニタリング
      • データ分析
      • 外部Opsツール統合
        • LangSmithを統合
        • LangFuseを統合
        • Opikを統合
    • 拡張
      • API 拡張
        • Cloudflare Workers を使用した API ツールのデプロイ
        • コンテンツモデレーション
      • コード拡張
        • 外部データツール
        • コンテンツモデレーション
    • コラボレーション
      • 発見
      • メンバーの招待と管理
    • 管理
      • アプリの管理
      • チームメンバーの管理
      • 個人アカウントの管理
      • サブスクリプション管理
      • バージョン管理
  • ハンドオン工房
    • 初級編
      • ゼロからAI画像生成アプリの構築方法
      • AIエージェントの実践:個人のオンライン旅行アシスタントの構築方法
    • 中級編
      • チャットストリームエージェントを使用した Twitter アカウントの分析方法
      • ファイルアップロードを使用した記事理解アシスタントの構築方法
  • コミュニティ
    • サポートの求め
    • 貢献者ガイド
    • ドキュメントへの貢献
  • プラグイン
    • 機能紹介
    • クイックスタート
      • プラグインのインストールと活用
      • プラグイン開発の入門
        • 開発環境のセットアップ
        • ツール型プラグイン
        • モデル型プラグイン
          • モデルプロバイダーの構築
          • 定義済みモデルの組み込み
          • カスタムモデルの組み込み
        • エージェント戦略プラグイン
        • 拡張機能型プラグイン
        • バンドル
      • プラグインのデバッグ方法
    • プラグイン管理方法
    • スキーマ仕様
      • Manifest(マニフェスト)
      • Endpoint(エンドポイント)
      • Tool(ツール)
      • Agent(エージェント)
      • Model(モデル)
        • モデル設計規則
        • モデルスキーマ
      • 一般的な標準仕様
      • 永続化されたストレージ
      • Difyサービスの逆呼び出し
        • アプリ
        • モデル
        • ツール
        • ノード
    • ベストプラクティス
      • Slack Bot プラグインの開発
      • Dify MCP プラグインガイド:ワンクリックで Zapier に接続してメールを自動送信
    • プラグインの公開
      • プラグインの自動公開
      • Difyマーケットプレイスへの公開
        • プラグイン開発者ガイドライン
        • プラグインのプライバシー保護に関するガイドライン
      • 個人GitHubリポジトリへの公開
      • ローカルでの公開と共有
      • 第三者署名検証のためにプラグインに署名する
    • よくある質問
  • 開発
    • バックエンド
      • DifySandbox
        • 貢献ガイド
    • モデルの統合
      • Hugging Faceのオープンソースモデルを統合
      • Replicateのオープンソースモデルを統合
      • Xinferenceでデプロイしたローカルモデルを統合
      • OpenLLMでデプロイしたローカルモデルを統合
      • LocalAIでデプロイしたローカルモデルを統合
      • Ollamaでデプロイしたローカルモデルを統合
      • LiteLLM Proxyを使用してモデルを統合する
      • GPUStackとの統合によるローカルモデルのデプロイ
      • AWS Bedrock上のモデル(DeepSeek)の接続
    • 移行
      • コミュニティ版を v1.0.0 に移行する
  • もっと読む
    • 活用事例
      • DeepSeek & Dify連携ガイド:多段階推論を活用したAIアプリケーション構築
      • Ollama + DeepSeek + Dify のプライベートデプロイ:あなた自身のAIアシスタントの構築方法
      • あなた専用のQAチャットボットのトレーニング方法
      • コードなしでMidjourney プロンプトボットを作成する方法
      • Notion AI アシスタントを構築する
      • 数分で業務データを持つ公式サイトのAIチャットボットを作成する方法
      • DifyチャットボットをWixサイトに統合する方法
      • AWS Bedrockのナレッジベースに統合する方法
      • Difyで大規模言語モデルの「競技場」を体験する方法:DeepSeek R1 VS o1 を例に
      • Difyスケジューラーの構築
      • DifyクラウドでAI Thesis Slack Botを構築
    • さらに読む
      • LLMOpsとは何ですか?
      • 配列変数とは何ですか?
      • 検索拡張生成(RAG)
        • ハイブリッド検索
        • Rerank
        • リトリーバルモード
      • プロンプトエンジニアリング
      • DifyでJSONスキーマ出力を使用する方法
    • FAQ
      • ローカルデプロイに関するFAQ
      • LLM設定と使用に関するFAQ
      • プラグイン
  • ポリシー
    • オープンソースライセンス
    • ユーザ規約
      • 利用規約
      • プライバシーポリシー
      • 合規性レポートの入手方法
Powered by GitBook
On this page
  • RAGコンセプトの説明
  • RAGと他のテキストトレーニング手法の比較
  1. もっと読む
  2. さらに読む

検索拡張生成(RAG)

Previous配列変数とは何ですか?Nextハイブリッド検索

Last updated 5 months ago

RAGコンセプトの説明

RAGアーキテクチャは、ベクトル検索を中核としで、大規模モデルが最新の外部知識にアクセスすることを可能にします。これにより、生成されたコンテンツに関する幻覚問題にも対処できる、主流の技術フレームワークとなっています。この技術は多様なアプリケーションシナリオで利用されています。

開発者は、この技術を活用して、低コストでAIを活用したカスタマーサービスや企業のナレッジベース、AI検索エンジンなどを構築できます。自然言語入力を介して様々な知識構成と対話することで、知的なシステムを創造できます。代表的なRAGアプリを例に示します:

次の図では、ユーザーが「アメリカ合衆国の大統領は誰ですか?」と尋ねた場合、システムはその質問を直接大規模モデルに渡して回答を得るのではなく、まずナレッジベース(図に示されているWikipediaなど)でベクトル検索を行います。意味的類似性マッチングを通じて関連コンテンツ(例:「ジョー・バイデンはアメリカ合衆国の第46代および現職大統領である…」)を見つけ出します。その後、システムはユーザーの質問と収集した関連知識を大規模モデルに提供し、十分な情報を基に信頼性のある回答を得ることができます。

なぜこれが必要なのか?

大規模モデルは、さまざまな人類知識の分野に精通したスーパーエキスパートと見なすことができますが、いくつかの制限があります。例えば、個人情報については把握していないため、その情報はプライベートであり、インターネット上にも公開されていません。そのため、事前学習の機会がありません。

このスーパーエキスパートを個人の財務アドバイザーとして雇う場合、質問に答える前に投資記録や家計支出などのデータを確認することを許可する必要があります。これにより、専門家はあなたの状況に基づいた専門的なアドバイスを提供できるのです。

これがRAGシステムの役割です:大規模モデルが持っていない外部知識を一時的に取得し、質問に答える前に必要な情報を見つけ出す手助けをします。

この例から、RAGシステムにおいて最も重要な要素が外部知識の収集であることがわかります。専門家が必要な情報を正確に見つけられるかどうかが、専門的な財務アドバイスを提供できるかどうかを決定します。もし投資記録ではなく減量計画を見つけてしまった場合、どれほど知識が豊富な専門家でも無力になってしまうのです。

RAGと他のテキストトレーニング手法の比較

  • RAG対ファインチューニング:同じレベルの成果を達成できた場合、RAGはコストの面とリアルタイムでの性能において明らかな優位性を持ちます。しかし、ファインチューニングの手法は、データの質と量に対してより高い基準を要求します。さらに、ファインチューニングを採用したアプリケーションは、時にRAGの技術サポートが必要になることもあります。

  • 長文テキストの取り扱いとRAG:多くの研究で示されているように、長いテキストを処理する際、テキストが長くなるほど検索の精度が低下するという問題が存在します。そのため、どのような状況でも、高精度な検索システムであるRAGと組み合わせることが可能です。これにより、長文テキストを扱う能力を持つLLMとRAGを効果的に組み合わせることで、互いの強みを活かし合い、欠点を補い合うことができます。

全体を通して、RAGは大規模なモデルが外部の最新情報データソースにアクセスし、関連分野の知識のギャップを埋め、提供する回答と知識の関連性を強化することを可能にします。RAGは、LLMが外部ソースから取得した検証可能なリアルタイムデータと組み合わせることで、より正確な回答を出力する手助けをし、結果の信頼性を高め、不要なリスクを減少させます。

基本的なRAGアーキテクチャ