Dify
简体中文
简体中文
  • 入门
    • 欢迎使用 Dify
      • 特性与技术规格
      • 模型供应商列表
    • 云服务
    • 社区版
      • Docker Compose 部署
      • 本地源码启动
      • 宝塔面板部署
      • 单独启动前端 Docker 容器
      • 环境变量说明
      • 常见问题
    • Dify Premium
    • Dify 教育版
  • 手册
    • 接入大模型
      • 增加新供应商
      • 预定义模型接入
      • 自定义模型接入
      • 接口方法
      • 配置规则
      • 负载均衡
    • 构建应用
      • 创建应用
      • 聊天助手
        • 多模型调试
      • Agent
      • 应用工具箱
        • 敏感内容审查
    • 工作流
      • 关键概念
      • 变量
      • 节点说明
        • 开始
        • LLM
        • 知识检索
        • 问题分类
        • 条件分支
        • 代码执行
        • 模板转换
        • 文档提取器
        • 列表操作
        • 变量聚合
        • 变量赋值
        • 迭代
        • 参数提取
        • HTTP 请求
        • Agent
        • 工具
        • 结束
        • 直接回复
        • 循环
      • 快捷键
      • 编排节点
      • 文件上传
      • 异常处理
        • 预定义异常处理逻辑
        • 错误类型
      • 附加功能
      • 预览与调试
        • 预览与运行
        • 单步调试
        • 对话/运行日志
        • 检查清单
        • 运行历史
      • 应用发布
      • 结构化输出
      • 变更公告:图片上传被替换为文件上传
    • 知识库
      • 创建知识库
        • 1. 导入文本数据
          • 1.1 从 Notion 导入数据
          • 1.2 从网页导入数据
        • 2. 指定分段模式
        • 3. 设定索引方法与检索设置
      • 管理知识库
        • 维护知识库内文档
        • 通过 API 维护知识库
      • 元数据
      • 在应用内集成知识库
      • 召回测试/引用归属
      • 知识库请求频率限制
      • 连接外部知识库
      • 外部知识库 API
    • 工具
      • 快速接入工具
      • 高级接入工具
      • 工具配置
        • Google
        • Bing
        • SearchApi
        • StableDiffusion
        • Dall-e
        • Perplexity Search
        • AlphaVantage 股票分析
        • Youtube
        • SearXNG
        • Serper
        • SiliconFlow (支持 Flux 绘图)
        • ComfyUI
    • 发布
      • 发布为公开 Web 站点
        • Web 应用的设置
        • 文本生成型应用
        • 对话型应用
      • 嵌入网站
      • 基于 APIs 开发
      • 基于前端组件再开发
    • 标注
      • 日志与标注
      • 标注回复
    • 监测
      • 集成外部 Ops 工具
        • 集成 LangSmith
        • 集成 Langfuse
        • 集成 Opik
      • 数据分析
    • 扩展
      • API 扩展
        • 使用 Cloudflare Workers 部署 API Tools
        • 敏感内容审查
      • 代码扩展
        • 外部数据工具
        • 敏感内容审查
    • 协同
      • 发现
      • 邀请与管理成员
    • 管理
      • 应用管理
      • 团队成员管理
      • 个人账号管理
      • 订阅管理
      • 版本管理
  • 动手实验室
    • 初级
      • 如何搭建 AI 图片生成应用
      • AI Agent 实战:搭建个人在线旅游助手
    • 中级
      • 使用文件上传搭建文章理解助手
      • 使用知识库搭建智能客服机器人
      • ChatFlow 实战:搭建 Twitter 账号分析助手
  • 社区
    • 寻求支持
    • 成为贡献者
    • 为 Dify 文档做出贡献
  • 插件
    • 功能简介
    • 快速开始
      • 安装与使用插件
      • 插件开发
        • 初始化开发工具
        • Tool 插件
        • Model 插件
          • 创建模型供应商
          • 接入预定义模型
          • 接入自定义模型
        • Agent 策略插件
        • Extension 插件
        • Bundle 插件包
      • 插件调试
    • 插件管理
    • 接口定义
      • Manifest
      • Endpoint
      • Tool
      • Agent
      • Model
        • 模型设计规则
        • 模型接口
      • 通用规范定义
      • 持久化存储
      • 反向调用 Dify 服务
        • App
        • Model
        • Tool
        • Node
    • 最佳实践
      • 开发 Slack Bot 插件
      • Dify MCP 插件指南:一键连接 Zapier 并自动发送邮件
    • 发布插件
      • 自动发布插件
      • 发布至 Dify Marketplace
        • 插件开发者准则
        • 插件隐私政策准则
      • 发布至个人 GitHub 仓库
      • 本地发布与分享
      • 第三方签名验证
    • 常见问题
  • 研发
    • 后端
      • DifySandbox
        • 贡献指南
    • 模型接入
      • 接入 Hugging Face 上的开源模型
      • 接入 Replicate 上的开源模型
      • 接入 Xinference 部署的本地模型
      • 接入 OpenLLM 部署的本地模型
      • 接入 LocalAI 部署的本地模型
      • 接入 Ollama 部署的本地模型
      • 接入 LiteLLM 代理的模型
      • 接入 GPUStack 进行本地模型部署
      • 接入 AWS Bedrock 上的模型(DeepSeek)
    • 迁移
      • 将社区版迁移至 v1.0.0
  • 阅读更多
    • 应用案例
      • DeepSeek 与 Dify 集成指南:打造具备多轮思考的 AI 应用
      • 本地私有化部署 DeepSeek + Dify,构建你的专属私人 AI 助手
      • 如何训练出专属于“你”的问答机器人?
      • 教你十几分钟不用代码创建 Midjourney 提示词机器人
      • 构建一个 Notion AI 助手
      • 如何在几分钟内创建一个带有业务数据的官网 AI 智能客服
      • 使用全套开源工具构建 LLM 应用实战:在 Dify 调用 Baichuan 开源模型能力
      • 手把手教你把 Dify 接入微信生态
      • 使用 Dify 和 Twilio 构建 WhatsApp 机器人
      • 将 Dify 应用与钉钉机器人集成
      • 使用 Dify 和 Azure Bot Framework 构建 Microsoft Teams 机器人
      • 如何让 LLM 应用提供循序渐进的聊天体验?
      • 如何将 Dify Chatbot 集成至 Wix 网站?
      • 如何连接 AWS Bedrock 知识库?
      • 构建 Dify 应用定时任务助手
      • 如何在 Dify 内体验大模型“竞技场”?以 DeepSeek R1 VS o1 为例
      • 在 Dify 云端构建 AI Thesis Slack Bot
      • 将 Dify 快速接入 QQ、微信、飞书、钉钉、Telegram、Discord 等平台
    • 扩展阅读
      • 什么是 LLMOps?
      • 什么是数组变量?
      • 检索增强生成(RAG)
        • 混合检索
        • 重排序
        • 召回模式
      • 提示词编排
      • 如何使用 JSON Schema 让 LLM 输出遵循结构化格式的内容?
    • 常见问题
      • 本地部署
      • LLM 配置与使用
      • 插件
  • 政策
    • 开源许可证
    • 用户协议
      • 服务条款
      • 隐私政策
      • 获取合规报告
Powered by GitBook
On this page
  • 调用 LLM
  • 最佳实践
  • 调用 Summary
  • 调用 TextEmbedding
  • 调用 Rerank
  • 调用 TTS
  • 调用 Speech2Text
  • 调用 Moderation
  1. 插件
  2. 接口定义
  3. 反向调用 Dify 服务

Model

PreviousAppNextTool

Last updated 2 months ago

反向调用 Model 指的是插件能够反向调用 Dify 内 LLM 的能力,包括平台内的所有模型类型与功能,例如 TTS、Rerank 等。

不过请注意,调用模型需要传入一个 ModelConfig 类型的参数,它的结构可以参考 ,并且对于不同类型的模型,该结构会存在细微的差别。

例如对于 LLM 类型的模型,还需要包含 completion_params 与 mode 参数,你可以手动构建该结构,或者使用 model-selector 类型的参数或配置。

调用 LLM

入口

    self.session.model.llm

端点

    def invoke(
        self,
        model_config: LLMModelConfig,
        prompt_messages: list[PromptMessage],
        tools: list[PromptMessageTool] | None = None,
        stop: list[str] | None = None,
        stream: bool = True,
    ) -> Generator[LLMResultChunk, None, None] | LLMResult:
        pass

请注意,如果你调用的模型不具备 tool_call 的能力,那么此处传入的 tools 将不会生效。

用例

如果想在 Tool 中调用 OpenAI 的 gpt-4o-mini 模型,请参考以下示例代码:

from collections.abc import Generator
from typing import Any

from dify_plugin import Tool
from dify_plugin.entities.model.llm import LLMModelConfig
from dify_plugin.entities.tool import ToolInvokeMessage
from dify_plugin.entities.model.message import SystemPromptMessage, UserPromptMessage

class LLMTool(Tool):
    def _invoke(self, tool_parameters: dict[str, Any]) -> Generator[ToolInvokeMessage]:
        response = self.session.model.llm.invoke(
            model_config=LLMModelConfig(
                provider='openai',
                model='gpt-4o-mini',
                mode='chat',
                completion_params={}
            ),
            prompt_messages=[
                SystemPromptMessage(
                    content='you are a helpful assistant'
                ),
                UserPromptMessage(
                    content=tool_parameters.get('query')
                )
            ],
            stream=True
        )

        for chunk in response:
            if chunk.delta.message:
                assert isinstance(chunk.delta.message.content, str)
                yield self.create_text_message(text=chunk.delta.message.content)

可以留意到代码中传入了 tool_parameters 中的 query 参数。

最佳实践

并不建议手动来构建 LLMModelConfig,而是允许用户可以在 UI 上选择自己想使用的模型,在这种情况下可以修改一下工具的参数列表,按照如下配置,添加一个 model 参数:

identity:
  name: llm
  author: Dify
  label:
    en_US: LLM
    zh_Hans: LLM
    pt_BR: LLM
description:
  human:
    en_US: A tool for invoking a large language model
    zh_Hans: 用于调用大型语言模型的工具
    pt_BR: A tool for invoking a large language model
  llm: A tool for invoking a large language model
parameters:
  - name: prompt
    type: string
    required: true
    label:
      en_US: Prompt string
      zh_Hans: 提示字符串
      pt_BR: Prompt string
    human_description:
      en_US: used for searching
      zh_Hans: 用于搜索网页内容
      pt_BR: used for searching
    llm_description: key words for searching
    form: llm
  - name: model
    type: model-selector
    scope: llm
    required: true
    label:
      en_US: Model
      zh_Hans: 使用的模型
      pt_BR: Model
    human_description:
      en_US: Model
      zh_Hans: 使用的模型
      pt_BR: Model
    llm_description: which Model to invoke
    form: form
extra:
  python:
    source: tools/llm.py

请注意在该例子中指定了 model 的 scope 为 llm,那么此时用户就只能选择 llm 类型的参数,从而可以将上述用例的代码改成以下代码:

from collections.abc import Generator
from typing import Any

from dify_plugin import Tool
from dify_plugin.entities.model.llm import LLMModelConfig
from dify_plugin.entities.tool import ToolInvokeMessage
from dify_plugin.entities.model.message import SystemPromptMessage, UserPromptMessage

class LLMTool(Tool):
    def _invoke(self, tool_parameters: dict[str, Any]) -> Generator[ToolInvokeMessage]:
        response = self.session.model.llm.invoke(
            model_config=tool_parameters.get('model'),
            prompt_messages=[
                SystemPromptMessage(
                    content='you are a helpful assistant'
                ),
                UserPromptMessage(
                    content=tool_parameters.get('query')
                )
            ],
            stream=True
        )

        for chunk in response:
            if chunk.delta.message:
                assert isinstance(chunk.delta.message.content, str)
                yield self.create_text_message(text=chunk.delta.message.content)

调用 Summary

你可以请求该端点来总结一段文本,它会使用你当前 workspace 内的系统模型来总结文本。

入口

    self.session.model.summary

端点

  • text 为需要被总结的文本。

  • instruction 为你想要额外添加的指令,它可以让你风格化地总结文本。

    def invoke(
        self, text: str, instruction: str,
    ) -> str:

调用 TextEmbedding

入口

    self.session.model.text_embedding

端点

    def invoke(
        self, model_config: TextEmbeddingResult, texts: list[str]
    ) -> TextEmbeddingResult:
        pass

调用 Rerank

入口

    self.session.model.rerank

端点

    def invoke(
        self, model_config: RerankModelConfig, docs: list[str], query: str
    ) -> RerankResult:
        pass

调用 TTS

入口

    self.session.model.tts

端点

    def invoke(
        self, model_config: TTSModelConfig, content_text: str
    ) -> Generator[bytes, None, None]:
        pass

请注意 tts 端点返回的 bytes 流是一个 mp3 音频字节流,每一轮迭代返回的都是一个完整的音频。如果你想做更深入的处理任务,请选择合适的库进行。

调用 Speech2Text

入口

    self.session.model.speech2text

端点

    def invoke(
        self, model_config: Speech2TextModelConfig, file: IO[bytes]
    ) -> str:
        pass

其中 file 是一个 mp3 格式编码的音频文件。

调用 Moderation

入口

    self.session.model.moderation

端点

    def invoke(self, model_config: ModerationModelConfig, text: str) -> bool:
        pass

若该端点返回 true 则表示 text 中包含敏感内容。

通用规范定义