Dify
简体中文
简体中文
  • 入门
    • 欢迎使用 Dify
      • 特性与技术规格
      • 模型供应商列表
    • 云服务
    • 社区版
      • Docker Compose 部署
      • 本地源码启动
      • 宝塔面板部署
      • 单独启动前端 Docker 容器
      • 环境变量说明
      • 常见问题
    • Dify Premium
    • Dify 教育版
  • 手册
    • 接入大模型
      • 增加新供应商
      • 预定义模型接入
      • 自定义模型接入
      • 接口方法
      • 配置规则
      • 负载均衡
    • 构建应用
      • 创建应用
      • 聊天助手
        • 多模型调试
      • Agent
      • 应用工具箱
        • 敏感内容审查
    • 工作流
      • 关键概念
      • 变量
      • 节点说明
        • 开始
        • LLM
        • 知识检索
        • 问题分类
        • 条件分支
        • 代码执行
        • 模板转换
        • 文档提取器
        • 列表操作
        • 变量聚合
        • 变量赋值
        • 迭代
        • 参数提取
        • HTTP 请求
        • Agent
        • 工具
        • 结束
        • 直接回复
        • 循环
      • 快捷键
      • 编排节点
      • 文件上传
      • 异常处理
        • 预定义异常处理逻辑
        • 错误类型
      • 附加功能
      • 预览与调试
        • 预览与运行
        • 单步调试
        • 对话/运行日志
        • 检查清单
        • 运行历史
      • 应用发布
      • 结构化输出
      • 变更公告:图片上传被替换为文件上传
    • 知识库
      • 创建知识库
        • 1. 导入文本数据
          • 1.1 从 Notion 导入数据
          • 1.2 从网页导入数据
        • 2. 指定分段模式
        • 3. 设定索引方法与检索设置
      • 管理知识库
        • 维护知识库内文档
        • 通过 API 维护知识库
      • 元数据
      • 在应用内集成知识库
      • 召回测试/引用归属
      • 知识库请求频率限制
      • 连接外部知识库
      • 外部知识库 API
    • 工具
      • 快速接入工具
      • 高级接入工具
      • 工具配置
        • Google
        • Bing
        • SearchApi
        • StableDiffusion
        • Dall-e
        • Perplexity Search
        • AlphaVantage 股票分析
        • Youtube
        • SearXNG
        • Serper
        • SiliconFlow (支持 Flux 绘图)
        • ComfyUI
    • 发布
      • 发布为公开 Web 站点
        • Web 应用的设置
        • 文本生成型应用
        • 对话型应用
      • 嵌入网站
      • 基于 APIs 开发
      • 基于前端组件再开发
    • 标注
      • 日志与标注
      • 标注回复
    • 监测
      • 集成外部 Ops 工具
        • 集成 LangSmith
        • 集成 Langfuse
        • 集成 Opik
      • 数据分析
    • 扩展
      • API 扩展
        • 使用 Cloudflare Workers 部署 API Tools
        • 敏感内容审查
      • 代码扩展
        • 外部数据工具
        • 敏感内容审查
    • 协同
      • 发现
      • 邀请与管理成员
    • 管理
      • 应用管理
      • 团队成员管理
      • 个人账号管理
      • 订阅管理
      • 版本管理
  • 动手实验室
    • 初级
      • 如何搭建 AI 图片生成应用
      • AI Agent 实战:搭建个人在线旅游助手
    • 中级
      • 使用文件上传搭建文章理解助手
      • 使用知识库搭建智能客服机器人
      • ChatFlow 实战:搭建 Twitter 账号分析助手
  • 社区
    • 寻求支持
    • 成为贡献者
    • 为 Dify 文档做出贡献
  • 插件
    • 功能简介
    • 快速开始
      • 安装与使用插件
      • 插件开发
        • 初始化开发工具
        • Tool 插件
        • Model 插件
          • 创建模型供应商
          • 接入预定义模型
          • 接入自定义模型
        • Agent 策略插件
        • Extension 插件
        • Bundle 插件包
      • 插件调试
    • 插件管理
    • 接口定义
      • Manifest
      • Endpoint
      • Tool
      • Agent
      • Model
        • 模型设计规则
        • 模型接口
      • 通用规范定义
      • 持久化存储
      • 反向调用 Dify 服务
        • App
        • Model
        • Tool
        • Node
    • 最佳实践
      • 开发 Slack Bot 插件
      • Dify MCP 插件指南:一键连接 Zapier 并自动发送邮件
    • 发布插件
      • 自动发布插件
      • 发布至 Dify Marketplace
        • 插件开发者准则
        • 插件隐私政策准则
      • 发布至个人 GitHub 仓库
      • 本地发布与分享
      • 第三方签名验证
    • 常见问题
  • 研发
    • 后端
      • DifySandbox
        • 贡献指南
    • 模型接入
      • 接入 Hugging Face 上的开源模型
      • 接入 Replicate 上的开源模型
      • 接入 Xinference 部署的本地模型
      • 接入 OpenLLM 部署的本地模型
      • 接入 LocalAI 部署的本地模型
      • 接入 Ollama 部署的本地模型
      • 接入 LiteLLM 代理的模型
      • 接入 GPUStack 进行本地模型部署
      • 接入 AWS Bedrock 上的模型(DeepSeek)
    • 迁移
      • 将社区版迁移至 v1.0.0
  • 阅读更多
    • 应用案例
      • DeepSeek 与 Dify 集成指南:打造具备多轮思考的 AI 应用
      • 本地私有化部署 DeepSeek + Dify,构建你的专属私人 AI 助手
      • 如何训练出专属于“你”的问答机器人?
      • 教你十几分钟不用代码创建 Midjourney 提示词机器人
      • 构建一个 Notion AI 助手
      • 如何在几分钟内创建一个带有业务数据的官网 AI 智能客服
      • 使用全套开源工具构建 LLM 应用实战:在 Dify 调用 Baichuan 开源模型能力
      • 手把手教你把 Dify 接入微信生态
      • 使用 Dify 和 Twilio 构建 WhatsApp 机器人
      • 将 Dify 应用与钉钉机器人集成
      • 使用 Dify 和 Azure Bot Framework 构建 Microsoft Teams 机器人
      • 如何让 LLM 应用提供循序渐进的聊天体验?
      • 如何将 Dify Chatbot 集成至 Wix 网站?
      • 如何连接 AWS Bedrock 知识库?
      • 构建 Dify 应用定时任务助手
      • 如何在 Dify 内体验大模型“竞技场”?以 DeepSeek R1 VS o1 为例
      • 在 Dify 云端构建 AI Thesis Slack Bot
      • 将 Dify 快速接入 QQ、微信、飞书、钉钉、Telegram、Discord 等平台
    • 扩展阅读
      • 什么是 LLMOps?
      • 什么是数组变量?
      • 检索增强生成(RAG)
        • 混合检索
        • 重排序
        • 召回模式
      • 提示词编排
      • 如何使用 JSON Schema 让 LLM 输出遵循结构化格式的内容?
    • 常见问题
      • 本地部署
      • LLM 配置与使用
      • 插件
  • 政策
    • 开源许可证
    • 用户协议
      • 服务条款
      • 隐私政策
      • 获取合规报告
Powered by GitBook
On this page
  • 目录
  • 介绍
  • 配置
  • 使用场景
  • 结构化数据处理
  • 数学计算
  • 拼接数据
  • 本地部署
  • 安全策略
  • 高级功能
  • 常见问题
  1. 手册
  2. 工作流
  3. 节点说明

代码执行

Previous条件分支Next模板转换

Last updated 5 months ago

目录

介绍

代码节点支持运行 Python / NodeJS 代码以在工作流程中执行数据转换。它可以简化你的工作流程,适用于Arithmetic、JSON transform、文本处理等情景。

该节点极大地增强了开发人员的灵活性,使他们能够在工作流程中嵌入自定义的 Python 或 Javascript 脚本,并以预设节点无法达到的方式操作变量。通过配置选项,你可以指明所需的输入和输出变量,并撰写相应的执行代码:

配置

使用场景

使用代码节点,你可以完成以下常见的操作:

结构化数据处理

在工作流中,经常要面对非结构化的数据处理,如JSON字符串的解析、提取、转换等。最典型的例子就是HTTP节点的数据处理,在常见的API返回结构中,数据可能会被嵌套在多层JSON对象中,而我们需要提取其中的某些字段。代码节点可以帮助你完成这些操作,下面是一个简单的例子,它从HTTP节点返回的JSON字符串中提取了data.name字段:

def main(http_response: str) -> str:
    import json
    data = json.loads(http_response)
    return {
        # 注意在输出变量中声明result
        'result': data['data']['name'] 
    }

数学计算

当工作流中需要进行一些复杂的数学计算时,也可以使用代码节点。例如,计算一个复杂的数学公式,或者对数据进行一些统计分析。下面是一个简单的例子,它计算了一个数组的平方差:

def main(x: list) -> float:
    return {
        # 注意在输出变量中声明result
        'result' : sum([(i - sum(x) / len(x)) ** 2 for i in x]) / len(x)
    }

拼接数据

有时,也许你需要拼接多个数据源,如多个知识检索、数据搜索、API调用等,代码节点可以帮助你将这些数据源整合在一起。下面是一个简单的例子,它将两个知识库的数据合并在一起:

def main(knowledge1: list, knowledge2: list) -> list:
    return {
        # 注意在输出变量中声明result
        'result': knowledge1 + knowledge2
    }

本地部署

docker-compose -f docker-compose.middleware.yaml up -d

安全策略

无论是 Python3 还是 Javascript 代码执行器,它们的执行环境都被严格隔离(沙箱化),以确保安全性。这意味着开发者不能使用那些消耗大量系统资源或可能引发安全问题的功能,例如直接访问文件系统、进行网络请求或执行操作系统级别的命令。这些限制保证了代码的安全执行,同时避免了对系统资源的过度消耗。

高级功能

错误重试

针对节点发生的部分异常情况,通常情况下再次重试运行节点即可解决。开启错误重试功能后,节点将在发生错误的时候按照预设策略进行自动重试。你可以调整最大重试次数和每次重试间隔以设置重试策略。

  • 最大重试次数为 10 次

  • 最大重试间隔时间为 5000 ms

异常处理

代码节点处理信息时有可能会遇到代码执行异常的情况。应用开发者可以参考以下步骤配置异常分支,在节点出现异常时启用应对方案,而避免中断整个流程。

  1. 在代码节点启用 “异常处理”

  2. 选择异常处理方案并进行配置

常见问题

在代码节点内填写代码后为什么无法保存?

请检查代码是否包含危险行为。例如:

def main() -> dict:
    return {
        "result": open("/etc/passwd").read(),
    }

这段代码包含以下问题:

  • 未经授权的文件访问: 代码试图读取 "/etc/passwd" 文件,这是 Unix/Linux 系统中存储用户账户信息的关键系统文件。

  • 敏感信息泄露: "/etc/passwd" 文件包含系统用户的重要信息,如用户名、用户 ID、组 ID、home 目录路径等。直接访问可能会导致信息泄露。

危险代码将会被 Cloudflare WAF 自动拦截,你可以通过 “网页调试工具” 中的 “网络” 查看是否被拦截。

如果你需要在代码节点中使用其他节点的变量,你需要在输入变量中定义变量名,并引用这些变量,可以参考。

如果你是本地部署的用户,你需要启动一个沙盒服务,它会确保恶意代码不会被执行,同时,启动该服务需要使用Docker服务,你可以在找到Sandbox服务的具体信息,你也可以直接通过docker-compose启动服务:

如果你的系统安装了 Docker Compose V2 而不是 V1,请使用 docker compose 而不是 docker-compose。通过$ docker compose version检查这是否为情况。在阅读更多信息。

Code Error handling

需了解更多应对异常的处理办法,请参考。

变量引用
这里
这里
异常处理
介绍
使用场景
本地部署
安全策略
Cloudflare WAF