Dify
简体中文
简体中文
  • 入门
    • 欢迎使用 Dify
      • 特性与技术规格
      • 模型供应商列表
    • 云服务
    • 社区版
      • Docker Compose 部署
      • 本地源码启动
      • 宝塔面板部署
      • 单独启动前端 Docker 容器
      • 环境变量说明
      • 常见问题
    • Dify Premium
    • Dify 教育版
  • 手册
    • 接入大模型
      • 增加新供应商
      • 预定义模型接入
      • 自定义模型接入
      • 接口方法
      • 配置规则
      • 负载均衡
    • 构建应用
      • 创建应用
      • 聊天助手
        • 多模型调试
      • Agent
      • 应用工具箱
        • 敏感内容审查
    • 工作流
      • 关键概念
      • 变量
      • 节点说明
        • 开始
        • LLM
        • 知识检索
        • 问题分类
        • 条件分支
        • 代码执行
        • 模板转换
        • 文档提取器
        • 列表操作
        • 变量聚合
        • 变量赋值
        • 迭代
        • 参数提取
        • HTTP 请求
        • Agent
        • 工具
        • 结束
        • 直接回复
        • 循环
      • 快捷键
      • 编排节点
      • 文件上传
      • 异常处理
        • 预定义异常处理逻辑
        • 错误类型
      • 附加功能
      • 预览与调试
        • 预览与运行
        • 单步调试
        • 对话/运行日志
        • 检查清单
        • 运行历史
      • 应用发布
      • 结构化输出
      • 变更公告:图片上传被替换为文件上传
    • 知识库
      • 创建知识库
        • 1. 导入文本数据
          • 1.1 从 Notion 导入数据
          • 1.2 从网页导入数据
        • 2. 指定分段模式
        • 3. 设定索引方法与检索设置
      • 管理知识库
        • 维护知识库内文档
        • 通过 API 维护知识库
      • 元数据
      • 在应用内集成知识库
      • 召回测试/引用归属
      • 知识库请求频率限制
      • 连接外部知识库
      • 外部知识库 API
    • 工具
      • 快速接入工具
      • 高级接入工具
      • 工具配置
        • Google
        • Bing
        • SearchApi
        • StableDiffusion
        • Dall-e
        • Perplexity Search
        • AlphaVantage 股票分析
        • Youtube
        • SearXNG
        • Serper
        • SiliconFlow (支持 Flux 绘图)
        • ComfyUI
    • 发布
      • 发布为公开 Web 站点
        • Web 应用的设置
        • 文本生成型应用
        • 对话型应用
      • 嵌入网站
      • 基于 APIs 开发
      • 基于前端组件再开发
    • 标注
      • 日志与标注
      • 标注回复
    • 监测
      • 集成外部 Ops 工具
        • 集成 LangSmith
        • 集成 Langfuse
        • 集成 Opik
      • 数据分析
    • 扩展
      • API 扩展
        • 使用 Cloudflare Workers 部署 API Tools
        • 敏感内容审查
      • 代码扩展
        • 外部数据工具
        • 敏感内容审查
    • 协同
      • 发现
      • 邀请与管理成员
    • 管理
      • 应用管理
      • 团队成员管理
      • 个人账号管理
      • 订阅管理
      • 版本管理
  • 动手实验室
    • 初级
      • 如何搭建 AI 图片生成应用
      • AI Agent 实战:搭建个人在线旅游助手
    • 中级
      • 使用文件上传搭建文章理解助手
      • 使用知识库搭建智能客服机器人
      • ChatFlow 实战:搭建 Twitter 账号分析助手
  • 社区
    • 寻求支持
    • 成为贡献者
    • 为 Dify 文档做出贡献
  • 插件
    • 功能简介
    • 快速开始
      • 安装与使用插件
      • 插件开发
        • 初始化开发工具
        • Tool 插件
        • Model 插件
          • 创建模型供应商
          • 接入预定义模型
          • 接入自定义模型
        • Agent 策略插件
        • Extension 插件
        • Bundle 插件包
      • 插件调试
    • 插件管理
    • 接口定义
      • Manifest
      • Endpoint
      • Tool
      • Agent
      • Model
        • 模型设计规则
        • 模型接口
      • 通用规范定义
      • 持久化存储
      • 反向调用 Dify 服务
        • App
        • Model
        • Tool
        • Node
    • 最佳实践
      • 开发 Slack Bot 插件
      • Dify MCP 插件指南:一键连接 Zapier 并自动发送邮件
    • 发布插件
      • 自动发布插件
      • 发布至 Dify Marketplace
        • 插件开发者准则
        • 插件隐私政策准则
      • 发布至个人 GitHub 仓库
      • 本地发布与分享
      • 第三方签名验证
    • 常见问题
  • 研发
    • 后端
      • DifySandbox
        • 贡献指南
    • 模型接入
      • 接入 Hugging Face 上的开源模型
      • 接入 Replicate 上的开源模型
      • 接入 Xinference 部署的本地模型
      • 接入 OpenLLM 部署的本地模型
      • 接入 LocalAI 部署的本地模型
      • 接入 Ollama 部署的本地模型
      • 接入 LiteLLM 代理的模型
      • 接入 GPUStack 进行本地模型部署
      • 接入 AWS Bedrock 上的模型(DeepSeek)
    • 迁移
      • 将社区版迁移至 v1.0.0
  • 阅读更多
    • 应用案例
      • DeepSeek 与 Dify 集成指南:打造具备多轮思考的 AI 应用
      • 本地私有化部署 DeepSeek + Dify,构建你的专属私人 AI 助手
      • 如何训练出专属于“你”的问答机器人?
      • 教你十几分钟不用代码创建 Midjourney 提示词机器人
      • 构建一个 Notion AI 助手
      • 如何在几分钟内创建一个带有业务数据的官网 AI 智能客服
      • 使用全套开源工具构建 LLM 应用实战:在 Dify 调用 Baichuan 开源模型能力
      • 手把手教你把 Dify 接入微信生态
      • 使用 Dify 和 Twilio 构建 WhatsApp 机器人
      • 将 Dify 应用与钉钉机器人集成
      • 使用 Dify 和 Azure Bot Framework 构建 Microsoft Teams 机器人
      • 如何让 LLM 应用提供循序渐进的聊天体验?
      • 如何将 Dify Chatbot 集成至 Wix 网站?
      • 如何连接 AWS Bedrock 知识库?
      • 构建 Dify 应用定时任务助手
      • 如何在 Dify 内体验大模型“竞技场”?以 DeepSeek R1 VS o1 为例
      • 在 Dify 云端构建 AI Thesis Slack Bot
      • 将 Dify 快速接入 QQ、微信、飞书、钉钉、Telegram、Discord 等平台
    • 扩展阅读
      • 什么是 LLMOps?
      • 什么是数组变量?
      • 检索增强生成(RAG)
        • 混合检索
        • 重排序
        • 召回模式
      • 提示词编排
      • 如何使用 JSON Schema 让 LLM 输出遵循结构化格式的内容?
    • 常见问题
      • 本地部署
      • LLM 配置与使用
      • 插件
  • 政策
    • 开源许可证
    • 用户协议
      • 服务条款
      • 隐私政策
      • 获取合规报告
Powered by GitBook
On this page
  1. 手册
  2. 发布

基于 APIs 开发

Previous嵌入网站Next基于前端组件再开发

Last updated 2 months ago

Dify 基于“后端即服务”理念为所有应用提供了 API,为 AI 应用开发者带来了诸多便利。通过这一理念,开发者可以直接在前端应用中获取大型语言模型的强大能力,而无需关注复杂的后端架构和部署过程。

使用 Dify API 的好处

  • 让前端应用直接安全地调用 LLM 能力,省去后端服务的开发过程

  • 在可视化的界面中设计应用,并在所有客户端中实时生效

  • 对 LLM 供应商的基础能力进行了良好封装

  • 随时切换 LLM 供应商,并对 LLM 的密钥进行集中管理

  • 在可视化的界面中运营你的应用,例如分析日志、标注及观察用户活跃

  • 持续为应用提供更多工具能力、插件能力和知识库

如何使用

选择一个应用,在应用(Apps)左侧导航中可以找到访问 API(API Access)。在该页面中你可以查看 Dify 提供的 API 文档,并管理可访问 API 的凭据。

例如你是一个咨询公司的开发部分,你可以基于公司的私有数据库提供 AI 能力给终端用户或开发者,但开发者无法掌握你的数据和 AI 逻辑设计,从而使得服务可以安全、可持续的交付并满足商业目的。

在最佳实践中,API 密钥应通过后端调用,而不是直接以明文暴露在前端代码或请求中,这样可以防止你的应用被滥用或攻击。

你可以为一个应用创建多个访问凭据,以实现交付给不同的用户或开发者。这意味着 API 的使用者虽然使用了应用开发者提供的 AI 能力,但背后的 Promp 工程、知识库和工具能力是经封装的。

文本生成型应用

可用于生成高质量文本的应用,例如生成文章、摘要、翻译等,通过调用 completion-messages 接口,发送用户输入得到生成文本结果。用于生成文本的模型参数和提示词模板取决于开发者在 Dify 提示词编排页的设置。

你可以在应用 -> 访问 API 中找到该应用的 API 文档与范例请求。

例如,创建文本补全信息的 API 的调用示例:

curl --location --request POST 'https://api.dify.ai/v1/completion-messages' \
--header 'Authorization: Bearer ENTER-YOUR-SECRET-KEY' \
--header 'Content-Type: application/json' \
--data-raw '{
    "inputs": {},
    "response_mode": "streaming",
    "user": "abc-123"
}'
import requests
import json

url = "https://api.dify.ai/v1/completion-messages"

headers = {
    'Authorization': 'Bearer ENTER-YOUR-SECRET-KEY',
    'Content-Type': 'application/json',
}

data = {
    "inputs": {"text": 'Hello, how are you?'},
    "response_mode": "streaming",
    "user": "abc-123"
}

response = requests.post(url, headers=headers, data=json.dumps(data))

print(response.text)

对话型应用

可用于大部分场景的对话型应用,采用一问一答模式与用户持续对话。要开始一个对话请调用 chat-messages 接口,每次对话开始都会产生出新的 conversation\_id,通过该conversation\_id 传回接口就可继续保持该会话。

conversation_id 的注意事项:

  • 生成 conversation_id: 开始新对话时,请将 conversation_id 字段留空。系统将生成并返回一个新的 conversation_id,未来的交互中会使用该 conversation_id 继续对话。

  • 处理现有会话中的 conversation_id: 生成 conversation_id 后,对 API 的未来调用应包含此 conversation_id,以确保与 Dify 机器人的对话连续性。传递上一个 conversation_id 时,将忽略任何新的 inputs,仅处理正在进行的对话的 query。

  • 管理动态变量: 如果在会话期间需要修改逻辑或变量,你可以使用会话变量(特定于会话的变量)来调整 bot 的行为或回应。

你可以在应用 -> 访问 API 中找到该应用的 API 文档与范例请求。

例如,发送对话信息的 chat-messages API的调用示例:

curl --location --request POST 'https://api.dify.ai/v1/chat-messages' \
--header 'Authorization: Bearer ENTER-YOUR-SECRET-KEY' \
--header 'Content-Type: application/json' \
--data-raw '{
    "inputs": {},
    "query": "eh",
    "response_mode": "streaming",
    "conversation_id": "1c7e55fb-1ba2-4e10-81b5-30addcea2276",
    "user": "abc-123"
}'
import requests
import json

url = 'https://api.dify.ai/v1/chat-messages'
headers = {
    'Authorization': 'Bearer ENTER-YOUR-SECRET-KEY',
    'Content-Type': 'application/json',
}
data = {
    "inputs": {},
    "query": "eh",
    "response_mode": "streaming",
    "conversation_id": "1c7e55fb-1ba2-4e10-81b5-30addcea2276",
    "user": "abc-123"
}

response = requests.post(url, headers=headers, data=json.dumps(data))

print(response.text)
访问 API