Dify
English
English
  • Getting Started
    • Welcome to Dify
      • Features and Specifications
      • List of Model Providers
    • Dify Community
      • Deploy with Docker Compose
      • Start with Local Source Code
      • Deploy with aaPanel
      • Start Frontend Docker Container Separately
      • Environment Variables Explanation
      • FAQs
    • Dify Cloud
    • Dify Premium on AWS
    • Dify for Education
  • Guides
    • Model
      • Add New Provider
      • Predefined Model Integration
      • Custom Model Integration
      • Interfaces
      • Schema
      • Load Balancing
    • Application Orchestration
      • Create Application
      • Chatbot Application
        • Multiple Model Debugging
      • Agent
      • Application Toolkits
        • Moderation Tool
    • Workflow
      • Key Concepts
      • Variables
      • Node Description
        • Start
        • End
        • Answer
        • LLM
        • Knowledge Retrieval
        • Question Classifier
        • Conditional Branch IF/ELSE
        • Code Execution
        • Template
        • Doc Extractor
        • List Operator
        • Variable Aggregator
        • Variable Assigner
        • Iteration
        • Parameter Extraction
        • HTTP Request
        • Agent
        • Tools
        • Loop
      • Shortcut Key
      • Orchestrate Node
      • File Upload
      • Error Handling
        • Predefined Error Handling Logic
        • Error Type
      • Additional Features
      • Debug and Preview
        • Preview and Run
        • Step Run
        • Conversation/Run Logs
        • Checklist
        • Run History
      • Application Publishing
      • Structured Outputs
      • Bulletin: Image Upload Replaced by File Upload
    • Knowledge
      • Create Knowledge
        • 1. Import Text Data
          • 1.1 Import Data from Notion
          • 1.2 Import Data from Website
        • 2. Choose a Chunk Mode
        • 3. Select the Indexing Method and Retrieval Setting
      • Manage Knowledge
        • Maintain Documents
        • Maintain Knowledge via API
      • Metadata
      • Integrate Knowledge Base within Application
      • Retrieval Test / Citation and Attributions
      • Knowledge Request Rate Limit
      • Connect to an External Knowledge Base
      • External Knowledge API
    • Tools
      • Quick Tool Integration
      • Advanced Tool Integration
      • Tool Configuration
        • Google
        • Bing
        • SearchApi
        • StableDiffusion
        • Dall-e
        • Perplexity Search
        • AlphaVantage
        • Youtube
        • SearXNG
        • Serper
        • SiliconFlow (Flux AI Supported)
        • ComfyUI
    • Publishing
      • Publish as a Single-page Web App
        • Web App Settings
        • Text Generator Application
        • Conversation Application
      • Embedding In Websites
      • Developing with APIs
      • Re-develop Based on Frontend Templates
    • Annotation
      • Logs and Annotation
      • Annotation Reply
    • Monitoring
      • Data Analysis
      • Integrate External Ops Tools
        • Integrate LangSmith
        • Integrate Langfuse
        • Integrate Opik
    • Extension
      • API-Based Extension
        • External Data Tool
        • Deploy API Tools with Cloudflare Workers
        • Moderation
      • Code-Based Extension
        • External Data Tool
        • Moderation
    • Collaboration
      • Discover
      • Invite and Manage Members
    • Management
      • App Management
      • Team Members Management
      • Personal Account Management
      • Subscription Management
      • Version Control
  • Workshop
    • Basic
      • How to Build an AI Image Generation App
    • Intermediate
      • Build An Article Reader Using File Upload
      • Building a Smart Customer Service Bot Using a Knowledge Base
      • Generating analysis of Twitter account using Chatflow Agent
  • Community
    • Seek Support
    • Become a Contributor
    • Contributing to Dify Documentation
  • Plugins
    • Introduction
    • Quick Start
      • Install and Use Plugins
      • Develop Plugins
        • Initialize Development Tools
        • Tool Plugin
        • Model Plugin
          • Create Model Providers
          • Integrate the Predefined Model
          • Integrate the Customizable Model
        • Agent Strategy Plugin
        • Extension Plugin
        • Bundle
      • Debug Plugin
    • Manage Plugins
    • Schema Specification
      • Manifest
      • Endpoint
      • Tool
      • Agent
      • Model
        • Model Designing Rules
        • Model Schema
      • General Specifications
      • Persistent Storage
      • Reverse Invocation of the Dify Service
        • App
        • Model
        • Tool
        • Node
    • Best Practice
      • Develop a Slack Bot Plugin
      • Dify MCP Plugin Guide: Connect Zapier and Automate Email Delivery with Ease
    • Publish Plugins
      • Publish Plugins Automatically
      • Publish to Dify Marketplace
        • Plugin Developer Guidelines
        • Plugin Privacy Protection Guidelines
      • Publish to Your Personal GitHub Repository
      • Package the Plugin File and Publish it
      • Signing Plugins for Third-Party Signature Verification
    • FAQ
  • Development
    • Backend
      • DifySandbox
        • Contribution Guide
    • Models Integration
      • Integrate Open Source Models from Hugging Face
      • Integrate Open Source Models from Replicate
      • Integrate Local Models Deployed by Xinference
      • Integrate Local Models Deployed by OpenLLM
      • Integrate Local Models Deployed by LocalAI
      • Integrate Local Models Deployed by Ollama
      • Integrate Models on LiteLLM Proxy
      • Integrating with GPUStack for Local Model Deployment
      • Integrating AWS Bedrock Models (DeepSeek)
    • Migration
      • Migrating Community Edition to v1.0.0
  • Learn More
    • Use Cases
      • DeepSeek & Dify Integration Guide: Building AI Applications with Multi-Turn Reasoning
      • Private Deployment of Ollama + DeepSeek + Dify: Build Your Own AI Assistant
      • Build a Notion AI Assistant
      • Create a MidJourney Prompt Bot with Dify
      • Create an AI Chatbot with Business Data in Minutes
      • Integrating Dify Chatbot into Your Wix Website
      • How to connect with AWS Bedrock Knowledge Base?
      • Building the Dify Scheduler
      • Building an AI Thesis Slack Bot on Dify
    • Extended Reading
      • What is LLMOps?
      • Retrieval-Augmented Generation (RAG)
        • Hybrid Search
        • Re-ranking
        • Retrieval Modes
      • How to Use JSON Schema Output in Dify?
    • FAQ
      • Self-Host
      • LLM Configuration and Usage
      • Plugins
  • Policies
    • Open Source License
    • User Agreement
      • Terms of Service
      • Privacy Policy
      • Get Compliance Report
  • Features
    • Workflow
Powered by GitBook
On this page
  1. Plugins
  2. Schema Specification

Tool

PreviousEndpointNextAgent

Last updated 4 months ago

Before reading the detailed interface documentation, make sure you have read and have a general understanding of the Dify plugin's tool access process.

Data Structures

Message Returns

Dify supports multiple message types including text, links, images, file BLOBs, and JSON. You can return different types of messages through various interfaces.

By default, a tool's output in a workflow contains three fixed variables: files, text, and json. You can return data for these three variables using the methods below.

For example, use create_image_message to return images. Tools also support custom output variables for easier reference in workflow.

Image URL

Simply pass the image URL, and Dify will automatically download and return the image to users.

def create_image_message(self, image: str) -> ToolInvokeMessage:
    pass

Links

Use this interface to return a link:

def create_link_message(self, link: str) -> ToolInvokeMessage:
    pass

Text

Use this interface to return a text message:

def create_text_message(self, text: str) -> ToolInvokeMessage:
    pass

Files

Use this interface to return raw file data (images, audio, video, PPT, Word, Excel, etc.):

  • blob: Raw file data in bytes

  • meta: File metadata. Specify mime_type if needed, otherwise Dify uses octet/stream as default

def create_blob_message(self, blob: bytes, meta: dict = None) -> ToolInvokeMessage:
    pass

JSON

Use this interface to return formatted JSON. Commonly used for data transfer between workflow nodes. Most large models can read and understand JSON in agent mode.

def create_json_message(self, json: dict) -> ToolInvokeMessage:
    pass

Variables

For non-streaming output variables, use this interface. Later values override earlier ones:

def create_variable_message(self, variable_name: str, variable_value: Any) -> ToolInvokeMessage:
    pass

Streaming Variables

For typewriter-effect text output, use streaming variables. If you reference this variable in a chatflow application's answer node, text will display with a typewriter effect. Currently only supports string data:

def create_stream_variable_message(
    self, variable_name: str, variable_value: str
) -> ToolInvokeMessage:

Return Variable Definitions

To reference tool output variables in workflow applications, you need to define possible output variables beforehand. Dify plugins support json_schema format output variable definitions. Here's a simple example:

identity:
  author: author
  name: tool
  label:
    en_US: label
    zh_Hans: 标签
    ja_JP: ラベル
    pt_BR: etiqueta
description:
  human:
    en_US: description
    zh_Hans: 描述
    ja_JP: 説明
    pt_BR: descrição
  llm: description
output_schema:
  type: object
  properties:
    name:
      type: string

This example defines a simple tool with an output_schema containing a name field that can be referenced in workflow. Note that you still need to return a variable in the tool's implementation code for actual use, otherwise it will return None.

Quick start: Tools