Dify
English
English
  • Getting Started
    • Welcome to Dify
      • Features and Specifications
      • List of Model Providers
    • Dify Community
      • Deploy with Docker Compose
      • Start with Local Source Code
      • Deploy with aaPanel
      • Start Frontend Docker Container Separately
      • Environment Variables Explanation
      • FAQs
    • Dify Cloud
    • Dify Premium on AWS
    • Dify for Education
  • Guides
    • Model
      • Add New Provider
      • Predefined Model Integration
      • Custom Model Integration
      • Interfaces
      • Schema
      • Load Balancing
    • Application Orchestration
      • Create Application
      • Chatbot Application
        • Multiple Model Debugging
      • Agent
      • Application Toolkits
        • Moderation Tool
    • Workflow
      • Key Concepts
      • Variables
      • Node Description
        • Start
        • End
        • Answer
        • LLM
        • Knowledge Retrieval
        • Question Classifier
        • Conditional Branch IF/ELSE
        • Code Execution
        • Template
        • Doc Extractor
        • List Operator
        • Variable Aggregator
        • Variable Assigner
        • Iteration
        • Parameter Extraction
        • HTTP Request
        • Agent
        • Tools
        • Loop
      • Shortcut Key
      • Orchestrate Node
      • File Upload
      • Error Handling
        • Predefined Error Handling Logic
        • Error Type
      • Additional Features
      • Debug and Preview
        • Preview and Run
        • Step Run
        • Conversation/Run Logs
        • Checklist
        • Run History
      • Application Publishing
      • Structured Outputs
      • Bulletin: Image Upload Replaced by File Upload
    • Knowledge
      • Create Knowledge
        • 1. Import Text Data
          • 1.1 Import Data from Notion
          • 1.2 Import Data from Website
        • 2. Choose a Chunk Mode
        • 3. Select the Indexing Method and Retrieval Setting
      • Manage Knowledge
        • Maintain Documents
        • Maintain Knowledge via API
      • Metadata
      • Integrate Knowledge Base within Application
      • Retrieval Test / Citation and Attributions
      • Knowledge Request Rate Limit
      • Connect to an External Knowledge Base
      • External Knowledge API
    • Tools
      • Quick Tool Integration
      • Advanced Tool Integration
      • Tool Configuration
        • Google
        • Bing
        • SearchApi
        • StableDiffusion
        • Dall-e
        • Perplexity Search
        • AlphaVantage
        • Youtube
        • SearXNG
        • Serper
        • SiliconFlow (Flux AI Supported)
        • ComfyUI
    • Publishing
      • Publish as a Single-page Web App
        • Web App Settings
        • Text Generator Application
        • Conversation Application
      • Embedding In Websites
      • Developing with APIs
      • Re-develop Based on Frontend Templates
    • Annotation
      • Logs and Annotation
      • Annotation Reply
    • Monitoring
      • Data Analysis
      • Integrate External Ops Tools
        • Integrate LangSmith
        • Integrate Langfuse
        • Integrate Opik
    • Extension
      • API-Based Extension
        • External Data Tool
        • Deploy API Tools with Cloudflare Workers
        • Moderation
      • Code-Based Extension
        • External Data Tool
        • Moderation
    • Collaboration
      • Discover
      • Invite and Manage Members
    • Management
      • App Management
      • Team Members Management
      • Personal Account Management
      • Subscription Management
      • Version Control
  • Workshop
    • Basic
      • How to Build an AI Image Generation App
    • Intermediate
      • Build An Article Reader Using File Upload
      • Building a Smart Customer Service Bot Using a Knowledge Base
      • Generating analysis of Twitter account using Chatflow Agent
  • Community
    • Seek Support
    • Become a Contributor
    • Contributing to Dify Documentation
  • Plugins
    • Introduction
    • Quick Start
      • Install and Use Plugins
      • Develop Plugins
        • Initialize Development Tools
        • Tool Plugin
        • Model Plugin
          • Create Model Providers
          • Integrate the Predefined Model
          • Integrate the Customizable Model
        • Agent Strategy Plugin
        • Extension Plugin
        • Bundle
      • Debug Plugin
    • Manage Plugins
    • Schema Specification
      • Manifest
      • Endpoint
      • Tool
      • Agent
      • Model
        • Model Designing Rules
        • Model Schema
      • General Specifications
      • Persistent Storage
      • Reverse Invocation of the Dify Service
        • App
        • Model
        • Tool
        • Node
    • Best Practice
      • Develop a Slack Bot Plugin
      • Dify MCP Plugin Guide: Connect Zapier and Automate Email Delivery with Ease
    • Publish Plugins
      • Publish Plugins Automatically
      • Publish to Dify Marketplace
        • Plugin Developer Guidelines
        • Plugin Privacy Protection Guidelines
      • Publish to Your Personal GitHub Repository
      • Package the Plugin File and Publish it
      • Signing Plugins for Third-Party Signature Verification
    • FAQ
  • Development
    • Backend
      • DifySandbox
        • Contribution Guide
    • Models Integration
      • Integrate Open Source Models from Hugging Face
      • Integrate Open Source Models from Replicate
      • Integrate Local Models Deployed by Xinference
      • Integrate Local Models Deployed by OpenLLM
      • Integrate Local Models Deployed by LocalAI
      • Integrate Local Models Deployed by Ollama
      • Integrate Models on LiteLLM Proxy
      • Integrating with GPUStack for Local Model Deployment
      • Integrating AWS Bedrock Models (DeepSeek)
    • Migration
      • Migrating Community Edition to v1.0.0
  • Learn More
    • Use Cases
      • DeepSeek & Dify Integration Guide: Building AI Applications with Multi-Turn Reasoning
      • Private Deployment of Ollama + DeepSeek + Dify: Build Your Own AI Assistant
      • Build a Notion AI Assistant
      • Create a MidJourney Prompt Bot with Dify
      • Create an AI Chatbot with Business Data in Minutes
      • Integrating Dify Chatbot into Your Wix Website
      • How to connect with AWS Bedrock Knowledge Base?
      • Building the Dify Scheduler
      • Building an AI Thesis Slack Bot on Dify
    • Extended Reading
      • What is LLMOps?
      • Retrieval-Augmented Generation (RAG)
        • Hybrid Search
        • Re-ranking
        • Retrieval Modes
      • How to Use JSON Schema Output in Dify?
    • FAQ
      • Self-Host
      • LLM Configuration and Usage
      • Plugins
  • Policies
    • Open Source License
    • User Agreement
      • Terms of Service
      • Privacy Policy
      • Get Compliance Report
  • Features
    • Workflow
Powered by GitBook
On this page
  • Quick Start
  • 1. Initialize the Directory
  • 2. Add Frontend Component Specifications
  • 3. Add Implementation Class
  • 4. Debug the Extension
  • Implementation Class Template
  • Detailed Introduction to Implementation Class Development
  • def validate_config
  • def query
  1. Guides
  2. Extension
  3. Code-Based Extension

External Data Tool

External data tools are used to fetch additional data from external sources after the end user submits data, and then assemble this data into prompts as additional context information for the LLM. Dify provides a default tool for external API calls, check API-Based Extension for details.

For developers deploying Dify locally, to meet more customized needs or to avoid developing an additional API Server, you can directly insert custom external data tool logic in the form of a plugin based on the Dify service. After extending custom tools, your custom tool options will be added to the dropdown list of tool types, and team members can use these custom tools to fetch external data.

Quick Start

Here is an example of extending an external data tool for Weather Search, with the following steps:

  1. Initialize the directory

  2. Add frontend form specifications

  3. Add implementation class

  4. Preview the frontend interface

  5. Debug the extension

1. Initialize the Directory

To add a custom type Weather Search, you need to create the relevant directory and files under api/core/external_data_tool.

.
└── api
    └── core
        └── external_data_tool
            └── weather_search
                ├── __init__.py
                ├── weather_search.py
                └── schema.json

2. Add Frontend Component Specifications

  • schema.json, which defines the frontend component specifications, detailed in Code-Based Extension

{
    "label": {
        "en-US": "Weather Search",
        "zh-Hans": "天气查询"
    },
    "form_schema": [
        {
            "type": "select",
            "label": {
                "en-US": "Temperature Unit",
                "zh-Hans": "温度单位"
            },
            "variable": "temperature_unit",
            "required": true,
            "options": [
                {
                    "label": {
                        "en-US": "Fahrenheit",
                        "zh-Hans": "华氏度"
                    },
                    "value": "fahrenheit"
                },
                {
                    "label": {
                        "en-US": "Centigrade",
                        "zh-Hans": "摄氏度"
                    },
                    "value": "centigrade"
                }
            ],
            "default": "centigrade",
            "placeholder": "Please select temperature unit"
        }
    ]
}

3. Add Implementation Class

weather_search.py code template, where you can implement the specific business logic.

Note: The class variable name must be the custom type name, consistent with the directory and file name, and must be unique.

from typing import Optional

from core.external_data_tool.base import ExternalDataTool


class WeatherSearch(ExternalDataTool):
    """
    The name of custom type must be unique, keep the same with directory and file name.
    """
    name: str = "weather_search"

    @classmethod
    def validate_config(cls, tenant_id: str, config: dict) -> None:
        """
        schema.json validation. It will be called when user save the config.

        Example:
            .. code-block:: python
                config = {
                    "temperature_unit": "centigrade"
                }

        :param tenant_id: the id of workspace
        :param config: the variables of form config
        :return:
        """

        if not config.get('temperature_unit'):
            raise ValueError('temperature unit is required')

    def query(self, inputs: dict, query: Optional[str] = None) -> str:
        """
        Query the external data tool.

        :param inputs: user inputs
        :param query: the query of chat app
        :return: the tool query result
        """
        city = inputs.get('city')
        temperature_unit = self.config.get('temperature_unit')

        if temperature_unit == 'fahrenheit':
            return f'Weather in {city} is 32°F'
        else:
            return f'Weather in {city} is 0°C'

4. Debug the Extension

Now, you can select the custom Weather Search external data tool extension type in the Dify application orchestration interface for debugging.

Implementation Class Template

from typing import Optional

from core.external_data_tool.base import ExternalDataTool


class WeatherSearch(ExternalDataTool):
    """
    The name of custom type must be unique, keep the same with directory and file name.
    """
    name: str = "weather_search"

    @classmethod
    def validate_config(cls, tenant_id: str, config: dict) -> None:
        """
        schema.json validation. It will be called when user save the config.

        :param tenant_id: the id of workspace
        :param config: the variables of form config
        :return:
        """

        # implement your own logic here

    def query(self, inputs: dict, query: Optional[str] = None) -> str:
        """
        Query the external data tool.

        :param inputs: user inputs
        :param query: the query of chat app
        :return: the tool query result
        """
       
        # implement your own logic here
        return "your own data."

Detailed Introduction to Implementation Class Development

def validate_config

schema.json form validation method, called when the user clicks "Publish" to save the configuration.

  • config form parameters

    • {{variable}} custom form variables

def query

User-defined data query implementation, the returned result will be replaced into the specified variable.

  • inputs: Variables passed by the end user

  • query: Current conversation input content from the end user, a fixed parameter for conversational applications.

PreviousCode-Based ExtensionNextModeration

Last updated 9 months ago